

**THE APPRAISAL FOUNDATION** Authorized by Congress as the Source of Appraisal Standards and Appraiser Qualifications

#### APPRAISAL PRACTICES BOARD

| TO:   | All Interested Parties                                                   |
|-------|--------------------------------------------------------------------------|
| FROM: | Rick O. Baumgardner, Chair<br>Appraisal Practices Board                  |
| RE:   | First Exposure Draft – Valuation of Green Buildings: Background and Core |
|       | Competency                                                               |

The Appraisal Practices Board (APB) was officially formed by The Appraisal Foundation Board of Trustees on July 1, 2010. The APB has been charged with the responsibility of identifying and issuing voluntary guidance on recognized valuation methods and techniques, which may apply to all disciplines within the appraisal profession. The APB has prioritized topics to offer guidance in areas which appraisers and users of appraisal services feel are the most pressing.

The Board accomplishes its mission through the use of panels of Subject Matter Experts (SMEs), comprised of widely recognized individuals with expertise in the specific topic being considered, who research and identify all pertinent sources of existing information on the given topic. The APB then vets the issue through this public exposure process, with the goal of ultimately adopting guidance, which may include more than one recognized method or technique that addresses the specific topic.

From the APB's perspective, compliance with all guidance issued by the Board is voluntary. However, it is possible that state or federal government agencies, clients and/or user groups of appraisal services, professional appraisal societies, or others may opt on their own volition to mandate compliance with the guidance issued by the APB.

This is the First Exposure Draft representing guidance applicable to the *Valuation of Green Buildings: Background and Core Competency*. The Board is seeking public comment in response to this exposure draft and based on the comments received, may make revisions to the guidance and issue subsequent exposure drafts. Once the Board believes it has received all relevant comment on this topic, it may vote to adopt the material as official guidance from the APB.

The Board is also currently engaged in developing guidance on other topics. It is anticipated that exposure drafts will be forthcoming in the very near future that relate to these other topics. In

addition, subsequent exposure drafts may include multiple topics for consideration simultaneously.

All interested parties are encouraged to comment in writing to the APB before the deadline of September 20, 2013. Respondents should be assured that each member of the APB will thoroughly read and consider all comments.

Written comments on this exposure draft can be submitted by mail, email and facsimile.

Mail: Appraisal Practices Board The Appraisal Foundation 1155 15<sup>th</sup> Street, NW, Suite 1111 Washington, DC 20005

Email: <u>APBcomments@appraisalfoundation.org</u>

Facsimile: (202) 347-7727

<u>IMPORTANT NOTE:</u> All written comments will be posted for public viewing, exactly as submitted, on the website of The Appraisal Foundation. Names may be redacted upon request.

The Appraisal Foundation reserves the right not to post written comments that contain offensive or inappropriate statements.

If you have any questions regarding the attached exposure draft, please contact Staci Steward, Practices Administrator at The Appraisal Foundation, via e-mail at staci@appraisalfoundation.org or by calling (202) 624-3052.

#### First Exposure Draft Valuation of Green Buildings: Background and Core Competency

#### Issued: July 15, 2013 Comment Deadline: September 20, 2013

When commenting on various aspects of this exposure draft, it is very helpful to reference the line numbers, fully explain the reasons for concern or support, provide examples or illustrations, and suggest any alternatives or additional issues that the APB should consider.



THE APPRAISAL FOUNDATION Authorized by Congress as the Source of Appraisal Standards and Appraiser Qualifications

APPRAISAL PRACTICES BOARD

# **Appraisal Practices Board**

**Voluntary Guidance on Recognized Valuation Methods and Techniques:** 

# Valuation of Green Buildings: Background and Core Competency

This communication is for the purpose of issuing guidance on recognized valuation methods and techniques. Compliance with such guidance is voluntary, unless mandated through applicable law, regulation, or policy.

Date Issued: To Be Determined

#### Application: Residential and Non-residential Real Property

Issue: As part of its ongoing responsibilities, the Appraisal Practices Board (APB) is tasked with identifying where appraisers and appraisal users believe additional guidance is required. Once such issue identified by the APB is *Valuation of Green Buildings* – *Background and Core Competency*. The APB established a Subject Matter Expert Panel on Green Building Background and Core Competency for appraisers to address the rapidly evolving influence of green and sustainable building practices in the property valuation profession.

The purpose of this document is to provide guidance to appraisers concerning the necessary background and core competency that is needed to value green, high-performance or sustainable commercial and residential buildings (henceforth referred to as green buildings) as well as existing building stock that is not green (henceforth referred to as brown buildings) yet may have green features or exist in a (local) market that values sustainability and/or green building. This Valuation Advisory is the first in a series of three to be issued by the APB on green buildings. The APB intends to issue additional advisories on the *Valuation of Green Buildings: Residential Properties* and the *Valuation of Green Buildings: Non-Residential Properties*.

In that context, this advisory is to provide guidance as to the background and core competency issues from which the next two advisories will build upon.

# Valuation of Green Buildings: Background and Core Competency

|         | Table of Contents            | nts  |  |
|---------|------------------------------|------|--|
| Section | Issue                        | Page |  |
|         | Executive Summary            | 5    |  |
| Ι       | Background                   | 6    |  |
| II      | Core Competency              | 7    |  |
| III     | Addendum: Selected Resources | 26   |  |

# **Executive Summary**

As green building and sustainable building practices continue to re-shape the construction and 1 2 operation of commercial and residential real estate, appraisers in all markets and of all skill and 3 experience levels are increasingly likely to encounter valuation assignments dealing with these 4 issues. The purpose of this Advisory is to provide the appraiser with pertinent background and 5 core competency needed to more fully understand the skills and knowledge needed to adapt to 6 changes in the marketplace, including the evolution of green and sustainable building practices in 7 the commercial and residential property sector. The next set of Advisories will specifically 8 address the Valuation of Green Buildings-Residential and Valuation of Green Buildings-9 Commercial.

10 Timely response by appraisers to changing market fundamentals is one of the most basic 11 expectations of users of appraisal services. Appraiser competency in the valuation of green 12 buildings is necessary to meet the expectations of the users of appraisal services and to ensure 13 public trust. The Uniform Standards of Professional Appraisal Practice (USPAP) requires an 14 appraiser to: (1) be competent to perform the assignment; (2) acquire the necessary competency 15 to perform the assignment; or (3) decline or withdraw from the assignment.<sup>1</sup>

# 16 Green/Energy Efficiency Education

- Because of the growth in the green building industry in many markets, appraisers are advised to familiarize themselves with at least the most common features in property types they appraise. In such cases, appraisers should expand their knowledge base and skill set to include familiarity with green building, sustainability, and energy efficiency. The specific educational path will vary depending on the appraiser's prior experience and expertise in this area, as well as the market expectations and client requirements.
- In order to keep up with this rapidly-changing field and changes in the market, appraisers should endeavor to incorporate green building and energy efficiency into their education regimen. Paths to competency include, but are not limited to, coursework and self-study, as well as attendance at professional seminars and presentations (live and online), offered both by appraisal organizations, as well as organizations like the U.S. Green Building Council (USGBC) and others that specialize in green building and energy efficiency.
- Suggested guidelines for competency thresholds can be found in Section Two of this document under the heading *Expectations for Appraisers/r Core Competency*.

# 31 Ensure Appropriate Scope of Work Parameters:

Under USPAP an appraiser must properly identify the assignment elements in order to determine an appropriate scope of work. This could include identifying relevant property characteristics such as the following features: energy efficiency, green, sustainable, high-performance, and on-site energy generation.

# [End of Executive Summary]

<sup>&</sup>lt;sup>1</sup> Uniform Standards of Professional Appraisal Practice (USPAP) – 2012-2013 edition, (Washington, D.C.: The Appraisal Foundation, 2012), U-11.

# Section I: Background

36 Green building awareness, knowledge and expertise is quickly becoming an area where 37 appraisers may need a higher level of sensitivity to their impact on the market. In some markets, 38 what was once an esoteric niche is becoming engrained in mainstream building practices. 39 building codes, and market behaviors. As market participants increasingly express green and 40 sustainable practices and expectations in their buy/lease decisions, appraisers should consider the 41 perspective of the relevant market participants, in markets where such change impacts value. 42 This Valuation Advisory is intended to provide guidance to appraisers and users of valuation 43 services seeking to determine the necessary knowledge and skills required to competently value 44 green buildings and existing building stock affected by green building.

45 The growing market adoption of sustainability principles and the changing regulatory 46 environment are creating a new normal against which buildings are to be judged in some 47 Building performance and obsolescence potential are emerging as concerns. markets. 48 Performance is now being measured across a variety of metrics that include resource use efficiency (energy and materials), water use, indoor environmental quality (air quality. davlight). 49 50 worker productivity, and proximity to transit, community services and housing. Class A office 51 in certain urban area may require LEED certification. New home buyers can choose among 52 multiple homes with ENERGY STAR or various green labels in a growing number of areas 53 across the U.S.

54 This evolution in some real estate markets may present new challenges that appraisers must 55 research and analyze as part of their assignment, such as:

- Market share of green buildings: Landlord response to tenant demand, in addition to
   code requirements, and how it impact new construction and major renovations to
   incorporate green features and pursue green certifications in the commercial sector.
- *Green building codes and mandates for green space*: With more and more municipalities instituting or expanding green building codes, and entities such as the GSA requiring that their buildings conform to green standards, competent valuation requires an understanding of new building technologies and value implications of the new building code standards. These new standards affect not only new buildings and retrofits but also brown buildings that do not comply with current building codes.
- Brevalence of brown buildings upgrading with green features such as energy-efficient
   HVAC systems, solar photovoltaic systems, or water-efficient fixtures: These types of
   upgrades, even in conventional buildings, could yield value impacts. Appraisers doing
   this type work must identify and value such features with market-supported adjustments.
- 69 4. Potential for obsolescence, also known as the brown discount, for existing buildings
  70 that don't "green up": Just as green buildings that outperform the market may show a
  71 value premium, brown buildings that underperform relative to their market may show a
  72 discount.

6

# **Section II: Core Competency**

The transition toward green buildings, green building codes and technologies, and the growing awareness of the relevance of sustainability to the marketplace discussed in the previous section can be viewed as part of the natural evolution of the real estate industry as it adapts to environmental, societal, and economic changes. Just as the building sector evolves, so too, must the skill set of the appraiser in order to accurately see the property through the eyes of the market, and thus render a competent valuation, based on market-supported conclusions.

# 79 Key Terms and Concepts

80 This list of key terms and concepts is meant to be representative of the minimum knowledge base 81 required of appraisers to meet baseline competency requirements, and is not intended to be 82 exhaustive.

- 83 Sustainability
- Green Building
- 85 Integration
- Green Building and Energy-Efficiency Rating Systems
- 87 Energy Modeling and Auditing
- Policy Initiatives and Regulations
- 89 Financing Incentives

#### 90 Sustainability

91 Sustainability is a very broad concept that lacks a single definition. It is most often defined with 92 reference to the 1987 United Nations Brundtland Commission Report which defines 93 sustainability as economic development that meets the needs of the current generation without 94 compromising the ability of future generations to meet their own needs.

When considering the application of this concept to a business setting, Elkington's "triple bottom line" (TBL) is commonly cited, which states that one must balance the economic, social and environmental objectives across current and future generations.<sup>2</sup> The TBL concept is also sometimes framed as "People, Planet, Profit."

While neither of these definitions speak specifically to the built environment, the RICS Global Property Sustainability Survey strongly echoes the TBL concept by "...equat[ing] sustainability with the goal of balancing economic, environmental and social objectives at global, national and local levels in order to meet the needs of today without compromising the ability of future generations to meet their needs."<sup>3</sup>

104 As RREEF's Sustainability Report notes, a definition that pertains to achieving sustainability 105 within the built environment is still evolving, but that, "Today, the focus is on operating

<sup>&</sup>lt;sup>2</sup> Elkington, J, *Cannibals with Forks: The Triple Bottom Line of 21st Century Business* (Stony Creek, CT: New Society Publishers, 1998), 20.

<sup>&</sup>lt;sup>3</sup> Royal Institution of Chartered Surveyors (RICS) Global Property Sustainability Survey (Q4 2009).

106 efficiency and risk mitigation with a growing emphasis on the environmental impact of 107 buildings."<sup>4</sup>

#### 108 *Relevance to Appraisers*

Sustainability's influence on real estate purchase and lease decisions is clear and growing as evidenced by a recent survey by CoreNet Global/JLL survey indicating that 92% of real estate executives consider sustainability criteria in their location decisions.<sup>5</sup> Most notably, sustainability has been the driving force behind green building and, as will be discussed further in a subsequent section, the key aspects of the major green building rating systems derive from the principles of sustainability.

In addition, the concept of sustainability presents a set of risks to the market value of real estate.
 These risks can be categorized as follows:<sup>6</sup>

- 117 Resource Use: Operational and Construction/Renovation
- 118 Obsolescence
- 119 Transparency & Stakeholder Influence
- 120 Externalities
- 121 The exhibit below illustrates examples of each of the above risks and the potential for impacts to 122 market value.

8

<sup>&</sup>lt;sup>4</sup> RREEF Real Estate 2012 Sustainability Report (2012).

<sup>&</sup>lt;sup>5</sup> CoreNet Global and Jones Lang LaSalle, "Perspectives on Sustainability: Results of the 2010 CoreNet Global and Jones Lang Lasalle Global Survey on Corporate Real Estate and Sustainability," Jones Lang LaSalle (March 2011).

<sup>&</sup>lt;sup>6</sup> Runde, T.P. and S. Thoyre, "Integrating Sustainability and Green Building into the Appraisal Process," Journal of Sustainable Real Estate (2010, 2): 221–48.

| RISK                                       | EXAMPLES OF                                                                                                                                                                | POTENTIAL PROPERT                                                                                                                                                                             | Y VALUE IMPACTS                                                                                                                                     |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| CATEGORY                                   | SUSTAINABILITY RISKS                                                                                                                                                       | Direct                                                                                                                                                                                        | Indirect                                                                                                                                            |
| RESOURCE USE                               | <ul> <li>↑ global demand for<br/>materials vs. fixed supply</li> <li>↑ energy cost, volatility;</li> <li>↑ water cost, rationing</li> </ul>                                | <ul> <li>↑ replacement cost;</li> <li>↑ TI &amp; future renovation costs</li> <li>↑ operating expenses,</li> <li>↓ NOI;</li> <li>Energy efficiency becomes paramount</li> </ul>               | <ul> <li>↑ replacement cost may<br/>↑ market barriers to<br/>entry; Renovate preferred<br/>over new construction;<br/>Life cycle costing</li> </ul> |
|                                            | <ul> <li>Consumption rate ↓, or<br/>patterns shift</li> </ul>                                                                                                              | <ul> <li>↓ demand for retail; change<br/>in type/location</li> </ul>                                                                                                                          | <ul> <li>↓ economic growth due<br/>to ripple effect of<br/>consumer (70% GDP)</li> </ul>                                                            |
| OBSOLESCENCE                               | <ul> <li>↑ need for properties to<br/>adapt to future uses and<br/>users (not yet identified)</li> <li>Increased rate of change<br/>expected in future</li> </ul>          | <ul> <li>↑ rate of depreciation;</li> <li>↑ TI, cap ex cost for less<br/>adaptable properties</li> </ul>                                                                                      | <ul> <li>↑ risk for special-<br/>purpose improvements</li> </ul>                                                                                    |
| TRANSPARENCY &<br>STAKEHOLDER<br>INFLUENCE | <ul> <li>↑ disclosure of energy<br/>efficiency</li> <li>Non-financial<br/>stakeholders influence<br/>investor decisions</li> </ul>                                         | <ul> <li>GRI reporting that triggers<br/>green-up of REIT portfolio;<br/>carbon reporting</li> </ul>                                                                                          | <ul> <li>Stigma for poor<br/>performers</li> <li>Supply chain reporting<br/>requirements</li> </ul>                                                 |
| EXTERNALITIES                              | <ul> <li>Greenhouse gas (GHG)<br/>and climate change<br/>legislation</li> <li>Community charges back<br/>project externalities</li> <li>Poor indoor air quality</li> </ul> | <ul> <li>Carbon taxes, cap &amp; trade;<br/>Project GHG emissions used as<br/>reason not to allow<br/>development</li> <li>Impact fees; assessments</li> <li>Health risk liability</li> </ul> | <ul> <li>Stigma: ↓ marketability</li> </ul>                                                                                                         |

Source: Runde, T.P. and S. Thoyre. Integrating Sustainability and Green Building into the Appraisal Process. *Journal of Sustainable Real Estate*, 2010, 2.

As a means of achieving a level of core competency, an appraiser should understand the concept of sustainability as it relates to real estate, and should also be able to both determine the degree to which the local market has incorporated sustainability principles into the buy/lease decisionmaking matrix, and objectively determine the degree to which the subject is affected by sustainability-related risks.

# 128 Green Building

129 The term, green building, can be used to mean both a noun (a structure with sustainability-related 130 features) and a verb (constructing or remodeling a structure with sustainability-related features).

There are wide-ranging definitions for the term and to date, no single agreed-upon definition. The Green Act, introduced by the U.S. House of Representative as HR 2336 in 2010, defined "...green building standards [to mean] standards to require use of sustainable design principles to reduce the use of nonrenewable resources, encourage energy-efficient construction and rehabilitation and the use of renewable energy resources, minimize the impact of development on the environment, and improve indoor air quality." This definition aligns closely with the leading green building rating systems, such as LEED and most of the major residential green labels, and 138 may be a useful description of the essential attributes of a green building and the goals of green

139 building design.

140 An important feature of green buildings is that the essential attributes described above are based 141 in the principles of sustainability, and therefore, encompass more than just energy-efficiency 142 features. This distinction proves salient to the appraiser and, despite the fact that the terms 143 "green" and "energy-efficient" are often incorrectly used as synonyms, they reflect different 144 building attributes. In practice, a green building will have features that address more than just 145 energy use such as water efficiency, sustainable site selection, indoor environmental quality, and 146 material selection, use and waste disposal. A building that is said to be "energy-efficient" may 147 not be a green building if the only distinguishing characteristic of the building is that it uses less 148 energy than a comparable building. Likewise, one cannot assume that a green building will 149 necessarily be more energy efficient than a conventional building.

# 150 *Relevance to Appraisers*

Green buildings, or brown buildings with green features, can contain special materials or equipment, can have design advantages and can be less (or more) expensive to operate. Such buildings may have unique technologies (solar panels, high-efficiency HVAC, BMS/BAS system) or qualities (siting, passive heating and cooling, a green certification) that may have additional value in the market. These features may affect the value of the property due to the initial cost as well as the potential impact on operating costs, lower risk, improved marketability or higher rental income.

158 As green building codes continue to proliferate, and as existing (brown) buildings incorporate 159 green technologies, the distinction between what is a green building and what is not will likely 160 become more difficult to pinpoint. This is not to say that a given market may not value a green 161 label, but the overriding concern to the appraiser should be to accurate identify the specific 162 features and attributes of a given property and properly gauge the effect on market value. By 163 focusing too much on the potential value impacts of green building labels/certifications, 164 appraisers may miss the value impacts of green building design concepts that have been 165 incorporated into existing brown buildings, such as the case where a conventional building upgrades its HVAC system with energy-efficient equipment or makes water-efficiency upgrades 166 167 to its plumbing systems. The upgraded property may lack a certification or label, and may not 168 technically be considered a "green building" but the green upgrades likely have a discernible 169 effect on market value and as such, need to be noted and appropriately valued. As with any 170 property characteristic, knowledgeable appraisers would be expected to remain focused on the 171 characteristics, performance and risk profile of a given property, and the degree to which the 172 market values those characteristics, when analyzing the effect on market value.

Appraisers should also be aware that green and energy efficient are not synonymous. Energyefficient buildings are not necessarily green. While green buildings are typically expected to be more energy efficient than their conventional counterparts, it is incumbent upon the appraiser to verify whether or not a green building is in fact more energy efficient than its peers, and appropriately consider the implications of modeled versus actual energy performance.

# 178 Integration

179 The concept of integration is central to green building and encompasses both a new approach to

180 building design and construction, referred to as the integrated design process (IDP), as well as 181 the concept of creating synergies that improve the function of a building on a variety of levels.

182 IDP is a departure from the conventional "Design-Bid-Build" model. IDP incorporates key 183 stakeholders from various disciplines working collaboratively from the outset of the design 184 process through the completion phase. Rather than thinking about a building as discrete parts, an 185 integrated design approach encourages the view of a building as a whole system; hence, it is 186 sometimes referred to as "whole building design" or "whole house approach" for residential 187 buildings.

188 The table below, produced for the British Columbia (Canada) Green Building Roundtable, 189 summarizes the key differences between IDP and the conventional Design-Bid-Build model.<sup>7</sup>

|    | <b>Conventional Design Process</b>                             |
|----|----------------------------------------------------------------|
| VS | Involves team members only when essential                      |
| VS | Less time, energy, and collaboration exhibited in early stages |
| VS | More decisions made by fewer people                            |
| VS | Linear process                                                 |
| VS | Systems often considered in isolation                          |
| VS | Limited to constrained optimization                            |
| VS | Diminished opportunity for synergies                           |
| VS | Emphasis on up-front costs                                     |
| VS | Typically finished when construction is<br>complete            |
|    | VS<br>VS<br>VS<br>VS<br>VS<br>VS<br>VS                         |

Source: Developed for the BC Green Building Roundtable 2007 by Busby, Perkins & Will.

190 By viewing the building as a system and by involving a wide range of viewpoints and skills on 191 the design team, integrated design can achieve synergies between the building components. For 192 example, installing water-efficient plumbing fixtures not only saves water, but saves energy 193 because as less water is used, less energy is used to heat and move the water throughout the 194 building. A vegetative (green) roof can both reduce storm water runoff and decrease the heat 195 island effect of a building which can affect heating/cooling requirements of a building. In a 196 commercial building, different window design utilizing overhang or specialty glazing can be 197 used to take full advantage of passive solar heating while also reducing unwanted solar heat gain, 198 and possibly reducing artificial lighting requirements. Done properly, this design element can 199 reduce energy used for heating, cooling and lighting. Further, reduced lighting, or changing to a 200 light source that generates less heat, can further reduce cooling needs. These elements have 201 measurable initial (first) cost impacts, as well as ongoing operational cost impacts due to reduced 202 energy use and maintenance.

<sup>&</sup>lt;sup>7</sup> Busby, Perkins + Will, "Roadmap for the Integrated Design Process," developed for the BC (Canada) Green Building Roundtable (2007).

#### 203 *Relevance to Appraisers*

204 These types of design and operational synergies may generate measurable construction and/or 205 operating cost savings, yet may be virtually invisible, even to those familiar with sustainable 206 building practices. Appraisers may need assistance from the design team in identifying and 207 describing integrated design strategies and the resulting synergies. In some cases, the cost 208 savings can be substantial. For example, in the proposed renovation of a 45,000 square foot 209 office/flex building to net-zero status, the integration of a ground-source heat pump system with 210 passive ventilation and BMS-controlled mechanical windows eliminated the need for \$600,000 211 of duct work. Additional operational savings will likely accrue by eliminating the need for fans 212 to move the air through the building for heating, cooling and ventilation. In this case, the 213 integrated design had implications in the Cost, Sales Comparison, and Income Approaches.

#### 214 Green Building and Energy-Efficiency Rating Systems

Green building rating systems are intended to both set a baseline for meeting new construction, retrofitting and operational requirements and also serve as a means of distinguishing buildings that have received certification from those that have not. Green building rating systems are distinguished from energy-efficiency scores and labels (such as ENERGY STAR or HERS) in that the latter focus solely on energy efficiency, while green building ratings systems are intended to rate a building's design and/or performance across the full spectrum of sustainability

221 criteria (i.e., the triple bottom line).

There are several widely acknowledged green building rating standards for commercial buildings in the U.S., and a larger number for residential properties. The residential standards are more plentiful and with few exceptions, tend to be more regionally specific.

- Virtually all of the sustainability-based rating systems (i.e., excluding ENERGY STAR and HERS/HERS II) award cumulative points across a range of common sustainability metrics that include five core categories:
- Energy Efficiency
- Materials and Resource
- Water Efficiency
- Indoor Environmental Quality (IEQ/IAQ)
- Site Efficiency/Community

Some green building rating systems include additional categories as well. Points are typically awarded in a cumulative fashion across all categories. Most green building rating systems incorporate energy efficiency at a minimum threshold for certification. For example, in some green building programs, the energy efficiency category may provide performance thresholds such as ENERGY STAR Benchmarking or a obtaining a minimum HERS Rating for homes.

The following discussions summarize some of the characteristics of the various standards and how these may or may not impact market value analyses and conclusions.

#### 240 Commercial Green Building Rating Systems

There are numerous green building rating systems in use worldwide. The two leading ratingsystems used in the United States are discussed below.

First Exposure Draft - Valuation of Green Buildings: Background and Core Competency12

# 243 *LEED*

244 The Leadership in Energy and Environmental Design (LEED) rating system is currently the most 245 widely utilized comprehensive green building rating system in the U.S. It is a voluntary rating 246 system that requires third-party verification for certification, which sign-off is provided by the 247 Green Building Certification Institute (GBCI). Version 1.0 of the standard was launched by the 248 U.S. Green Building Council (USGBC) at its Membership Summit in August of 1998. After extensive modifications, Version 2.0 was released in 2000. LEED Version 3.0 was released in 249 250 2009 and is set to be replaced by Version 4.0 in 2013. The rigor required to achieve certification 251 increases with each version, as does the focus on energy efficiency and by extension, carbon 252 pollution.

253 Certification for the standard is based on a point system and is awarded for basic LEED certification, as well as LEED Silver, LEED Gold and LEED Platinum, with each ascending 254 255 level of certification requiring a higher number of points. Points can be earned in the following 256 five core categories: Sustainable Sites, Water Efficiency, Energy and Atmosphere, Materials and 257 Resources, Indoor Environmental Quality, plus two additional categories: Innovation and Design 258 Process and Regional Priority Credits. LEED offers a variety of tracks for certification of 259 various property types, including New Construction (NC), Core and Shell (CS), Healthcare, 260 homes, and Existing Buildings Operations & Maintenance (EBOM), among others. Only the 261 Existing Building track (EBOM) measures actual performance of the building. All the other 262 tracks rate design, not actual performance. Each track has both common and unique credit 263 categories, making direct comparisons between tracks difficult. Further, since each track offers 264 alternate paths to achieve credits, and the credit totals are cumulative, properties that achieve 265 similar points and certification levels cannot be directly compared in a meaningful way for 266 valuation purposes.

# 267 Green Globes

Green Globes is the second most recognized comprehensive green rating system for commercial buildings in the U.S. and has gained momentum in recent years due to its adoption by several federal agencies, including Veterans Affairs and the State Department. Growth in the rating's level of adoption has been credited to the fact that Green Globes became the first green building program to achieve accreditation as a standards developer by the American National Standards Institute (ANSI).

It was originally designed as a self-certifying standard, but moved to third-party certification to
enhance credibility and gain wider market acceptance. Green Globes awards cumulative points
in categories including Energy, Water, Resources, Indoor Environment, Emissions,
Project/Environmental Management, and Site. Green Globes offers only two tracks: New
Construction and Existing Buildings.

# 279 Energy-Efficiency Rating Systems

These systems are designed to rate buildings solely on energy efficiency as opposed to green building rating systems which rate a building across multiple aspects of sustainability-related criteria. The two most well-known systems are ENERGY STAR and HERS.

ENERGY STAR is the Environmental Protection Agency's (EPA's) voluntary rating system
created to promote energy efficiency and reduce greenhouse gas emissions (GHGs). Unlike
LEED and Green Globes, which focus on multiple aspects of building construction and

performance, the ENERGY STAR program focuses solely on the energy performancecharacteristics of a property and how efficiency can be improved and maximized.

ENERGY STAR has been widely adopted across both the commercial and residential sectors in the U.S. and extends well beyond real estate into a variety of other products (residential and office equipment, heating and cooling systems and others). LEED utilizes the Energy Star rating and the portfolio manager software to award points in the Existing Building Operation and Maintenance track.

There are some important differences between ENERGY STAR for commercial properties and ENERGY STAR for homes. An ENERGY STAR score for a commercial building differs from an ENERGY STAR rating of a home. ENERGY STAR for commercial properties rates actual energy usage relative to a building's peers, adjusted for climate and occupancy use. ENERGY STAR for homes uses an energy modeling program that produces a HERS Index Rating and estimates projected energy use. ENERGY STAR for commercial properties is only available for existing buildings whereas ENERGY STAR for homes is only available for new construction.

#### 300 Residential Green Building Rating Systems

The rating systems for residential development are more numerous than those for commercial properties, making consistent comparisons across systems challenging. Residential green building rating systems tend to be more geographically diverse, though there are several national programs, such as the one developed by the National Association of Homebuilders. The table below includes a number of the better known residential green building and energy-efficiency rating systems. It is intended to be illustrative rather than comprehensive.

| Program                                    | Sponsor                                    | What it Rates     | Where Prevalent              |
|--------------------------------------------|--------------------------------------------|-------------------|------------------------------|
| ENERGY STAR                                | U.S. EPA                                   | Energy Efficiency | Nationwide                   |
| HERS / HERS II                             | RESNET                                     | Energy Efficiency | Nationwide/<br>(CA –HERS II) |
| National Green Building<br>Standard (NGBS) | NAHB                                       | Sustainability    | Nationwide                   |
| LEED- Homes                                | USGBC                                      | Sustainability    | Nationwide                   |
| GreenPoint Rated                           | BuildItGreen                               | Sustainability    | CA (primarily)               |
| Earth Advantage                            | Earth Advantage<br>Institute               | Sustainability    | Portland, OR                 |
| Built Green                                | Master Builders<br>Association             | Sustainability    | Seattle Area                 |
| Earthcraft                                 | Greater Atlanta<br>Builders &<br>Southface | Sustainability    | Southeast                    |
| GreenBuilt Texas                           | Home Builder<br>Ass'n of Greater<br>Dallas | Sustainability    | Texas                        |

Each program varies in its minimum category requirements, rigor, requirements for performance
 testing, pre-drywall inspection, third-party or self-certification, and whether the program applies
 to now or existing houses

to new or existing houses.

#### 310 *Relevance to Appraisers*

311 Green building rating systems are designed to offer market participants an easy to understand 312 label that purports to convey a building's sustainability attributes. In simple terms, these rating 313 systems seek to answer the question: is this a green building or not? The appraiser should 314 attempt to determine if the local market in fact recognizes a particular label, score, or rating in 315 this way, and if, in fact, there may be value added by a particular label. In many cases, the green-label sensitivity of market participants may be uncertain and/or difficult to substantiate. In 316 317 such cases, the various rating systems are best used as a framework to assist the appraiser in understanding how the green or energy efficient building is different from the comparables. 318

In most cases, appraisers will not be able to make direct comparisons between buildings that are rated or not, nor between similar buildings rated at different levels (LEED Silver versus LEED Gold, for example). Indeed, due to the cumulative nature of the point system, two buildings at the same rating level (LEED Silver, for example) may have different value-impacting characteristics from an appraisal standpoint. Each strategy should be assessed on the basis of whether or not it could create a differential to the operational, overall performance and/or risk characteristics of the property being analyzed and whether this differential constitutes a market advantage/disadvantage for a building incorporating more sustainable design, systems and protocols. This analysis should include analysis of the design intent of the various strategies, and the degree to which these goals are in line with the needs and desires of relevant market participants.

330 Properties rated by market-recognized, third-party certified standards have generally been 331 subjected to a more rigorous level of scrutiny, and are therefore, likely to reflect a higher overall 332 asset quality than unrated buildings. For example, properties certified under LEED typically 333 require at least a basic third-party commissioning of the mechanical systems, meaning that an 334 outside engineer verifies that the mechanical systems are operating as designed. Likewise, 335 residential rating systems that mandate a pre-drywall inspection for thermal bridging and quality 336 insulation installation reflect an added level of third-party review of the construction, over and 337 above basic code-compliance building inspections.

338 Given the wide variety of residential standards, the appraiser's responsibility is to familiarize 339 him/herself with the specifics of the relevant standards in their respective markets and to 340 objectively analyze whether, or not, these factors create potential differentials in market value for 341 higher performing properties. This analysis would consider market factors and trends regarding 342 these standards and whether, or not, a particular market recognizes the standards (and strategies 343 incorporated) as creating a benefit for properties adopting them. Key differences among the 344 programs that might impact value include the sponsor (the home building industry vs. an 345 independent organization for example), whether third-party certification is mandatory, and 346 whether third-party pre-drywall inspection and/or performance testing is mandatory.

These examples demonstrate the potential impact that various green strategies and practices might have on the market value analysis. If the valuation professional completing an assignment on a green building does not make the effort to understand and analyze the various green strategies employed, then they very likely have not performed an accurate or competent analysis of the property.

# 352 Energy Modeling and Auditing

# 353 Energy Modeling

354 Energy modeling is similar to cash flow modeling used in appraisal, but instead of modeling cash 355 flows, engineers, designers, and energy auditors use a computer program to model energy flows 356 within and throughout a structure. Energy models consist of a computer program that requires a 357 variety of inputs pertaining to the building envelope, construction materials, climate, occupancy 358 and use. The output of an energy model is a prediction of the energy use of a building, and the 359 reliability of the output is highly dependent on the quality of the inputs, the sophistication of the 360 software, and the skill of the operator. Therefore, energy models typically require some level of 361 specialized training in order to use and understand properly. The more advanced models such as 362 those used in the commercial sector may require more advanced training and/or degrees in engineering or similar disciplines. 363

Energy models are widely used in new construction for code compliance with energy codes and to comply with energy ratings like ENERGY STAR and voluntary green building rating systems such as LEED. Energy models are also used in existing homes and commercial buildings to 367 identify opportunities for energy-efficiency upgrades and to estimate potential energy savings 368 from a proposed retrofit or energy-efficiency upgrades. In residential homes this is sometimes 369 called an asset rating, as it predicts the performance of the building with limited input on 370 occupant behavior. Examples of asset rating in residential buildings include the HERS Index 371 Rating and the Dept. of Energy's Home Energy Score. Energy modeling can be performed on 372 any type of building, including both green and non-green buildings.

# 373 *Relevance to Appraisers*

374 Use of energy modeling data in the valuation process requires the appraiser to be aware of the 375 predictive limitations of energy modeling, as well as how an energy model differs from an 376 energy audit. Just as with car mileage, actual results rarely match modeled predictions, and in the 377 built environment, occupant behavior can significantly impact actual energy use. Further, as the 378 sophistication of the energy model increases, so do the required inputs, inputs which may or may 379 not be reliably known or supportable. The skill level and experience of the energy modeler also 380 must be consistent with the sophistication of the software and the complexity of the building. 381 While most appraisers lack the specialized training necessary to perform energy modeling. 382 appraisers may be expected to review and understand reports that result from energy modeling, 383 which will typically require an understanding of basic energy modeling concepts and 384 terminology such as energy use intensity (EUI) as well as what kWh and kBTU measure, and 385 how to convert between the two measures. Basic knowledge of energy modeling concepts, 386 practices and terminology by the appraiser is required in order to effectively interact with the 387 professionals responsible for creating the energy model and/or the report, and to incorporate the 388 results, as appropriate, into the appraisal. Appraisers should further be aware of the USPAP 389 requirements relating to relying on the work of others when contemplating the use of energy 390 modeling analysis in valuation settings. (See Lines 908-915 in the Comment to Standards Rule 391  $(2-3)^8$ 

# 392 Energy Audits

393 An energy audit, also sometimes referred to as a building performance assessment, can include a 394 variety of activities as well as define the report that specifies the results of those activities. An 395 energy audit differs from energy modeling because it measures how a building is actually 396 performing, not how it is intended to perform. Typically, an energy audit involves, at a 397 minimum, a walk-through inspection of the building by a trained inspector, or rater, a basic 398 equipment assessment, and the report will include an analysis of utility usage and energy-399 efficiency upgrade recommendations. More advanced audits may include building envelope 400 testing (blower door test) and/ or energy modeling. Examples of energy audits in the residential 401 sector include a Building Performance Assessment (BPA), or a compressive audit combined with 402 a HERS rating. In the commercial sector, the typical standard is an ASHRAE Level, 1, 2 or 3 403 energy audit, progressing form a Level 1 walk-through inspection with upgrade 404 recommendations, to an "investment grade" Level 3 report that may include advanced energy 405 modeling and analysis of systems interactions. Energy audits are routinely performed on all 406 types of properties, including both green and non-green buildings.

# 407 *Relevance to Appraisers*

408 Potential applications of energy audits by appraisers and underwriters include comparing similar 409 properties based on their predicted energy use as well as for ranking or assessing proposed

First Exposure Draft - Valuation of Green Buildings: Background and Core Competency17

<sup>&</sup>lt;sup>8</sup> Uniform Standards of Professional Appraisal Practice (USPAP) – 2012-2013 edition, (Washington, D.C.: The Appraisal Foundation, 2012), U-29.

410 energy efficiency upgrades or retrofits. HERS ratings may be used to adjust residential 411 comparables for predicted energy use. Energy audits in the commercial sector may point the 412 user to areas of potential cost-effective upgrades as well as identify areas where the subject 413 property differs, positively or negatively, from the comparables. In both residential and 414 commercial settings, the basic equipment assessment can provide meaningful insight to the 415 appraiser as to the anticipated performance and remaining useful life of the components.

416 As with energy modeling, most appraisers lack the specialized training required to perform an 417 energy audit. However, appraisers should review and understand energy audit reports, such as a 418 HERS report, or a Building Performance Assessment. A basic understanding of energy audit 419 concepts, practices and terminology is also required in order to effectively interact with the 420 professionals responsible for creating the energy audit report. For example, a residential 421 appraiser should be able to discern whether a lower HERS score correlates with lower or higher 422 energy use, and should be able to understand what a blower door test is measuring. Commercial 423 appraisers would be expected to understand whether an ENERGY STAR rating is positively or 424 negatively correlated with energy use, and know whether the rating is based on actual or 425 predicted (modeled) energy use. Clients may also require the appraiser to review and understand 426 a basic ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers) 427 audit. As with energy modeling, appraisers should be aware of the USPAP requirements relating 428 to relying on the work of others when contemplating the use of energy audits/performance 429 assessments in valuation settings.

# 430 **Policy Initiatives & Regulation**

Government policy and regulations concerning green building have proliferated in recent years.
Policy is generally broad in nature while regulations target specific market segments and
behaviors. Both serve to shape market behaviors in ways the market would not otherwise
address.

435 Policy and regulations concerning green building can come from the local, state and federal 436 levels. Local green building codes and state-mandated renewal portfolio standards (RPS) that 437 specify how much of a state's electricity must be derived from renewable sources, are examples 438 of regulations at the local and state levels. The federal Government has a variety of policies 439 relating to sustainability, including the 2009 Executive Order (EO13423 "Strengthening federal 440 Environmental, Energy, and Transportation Management"), requiring that agencies must buy 441 products that contain low or no toxic or hazardous constituents, contain the highest percentage of 442 recovered materials practicable, use energy-efficient products, and reduce indoor and outdoor 443 water use, among other requirements.

- Another example of federal policy is the 2010 Green Act. Although it died in committee, this
  legislation would have amended FIRREA to require appraisals to include energy-efficient
  features and renewable energy sources.
- 447 Appraisers should be aware of and familiar with green building policies and regulations, so that 448 they can differentiate between market-driven demand and policy-driven demand. For example,
- for an appraiser unfamiliar with local green building codes, the widespread use of energy
- 450 efficiency technologies might be interpreted as market-driven green building demand, due to the
- 451 market participants' embrace of sustainability principles. While this market-driven demand may
- 452 be a factor, the appraiser also should consider the possible role of increasingly stringent energy
- 453 portions of local or state building codes in generating demand for energy efficient technologies.

First Exposure Draft - Valuation of Green Buildings: Background and Core Competency18

454 Changing policies and regulations concerning the energy use and performance of buildings can

455 also have implications in the adjustment process of older comparables constructed to less 456 rigorous code standards. Energy codes might also affect the level at which energy costs are

457 stabilized for purposes of direct capitalization.

# 458 **Financing Incentives**

459 While mandates like building codes and regulations are the "stick" used to implement policy, 460 incentives are the "carrot" meant to motivate behaviors consistent with policy. Incentives are 461 available at the federal, state and local level, primarily from government entities, but also from 462 regional and local utilities. The incentives include preferential tax treatment such as credits and 463 deductions, financing products, and direct rebates. Each of these incentives is targeted to encourage a particular policy, and/or incorporation of specific building practices, protocols 464 465 and/or characteristics. The program funding availability and qualifications may change over 466 time, and the state and local incentives vary widely in their availability and nature based on the 467 particular location.

- 468 Some of the various incentives at the federal state and local level are summarized below:
- The federal government offers a 30 percent investment tax credit for installation of renewable energy generation systems such as solar, geothermal and wind.
- 471 Mortgage financing products tailored to energy efficiency and/or renewable energy, such as
   472 Energy Efficiency Mortgages or EEM offered by FHA, and the HUD Powersaver.
- At the state level, direct rebates for energy efficiency renovations and/or solar and renewable
   energy generating installations are available.
- Local and regional utility companies, charged with increasing the proportion of energy from renewable sources, may offer direct rebates to customers who install solar PV or solar thermal systems. In many cases, these incentives decline over time, in an effort to offset the higher initial cost to early adopters, and mirror the typical price declines in new technology as it increases in scale.
- Some counties (Los Angeles, San Francisco and Sonoma Counties in California, to name a few) are experimenting with financing solar PV and other distributed renewable energy sources with PACE (Property Assessed Clean Energy) programs. These programs function much like a bond assessment where the property owner pays the cost of the renewable energy improvements over time, as a special assessment added to the property tax bill.

# 485 *Relevance to Appraisers*

486 For appraisers engaged in typical lender appraisals, tax benefits may have limited relevance. 487 Rebates and incentives will affect initial cost, and therefore should be considered for new 488 construction and renovations. Appraisers who work with specialized financing products like 489 EEMs or Powersavers will need to be familiar with these programs and the scope of work should 490 detail how the assignment differs from an appraisal for conventional financing. PACE program 491 characteristics vary by the local jurisdiction, and how they affect the appraisal process will be 492 determined by the scope of work. Rebates and incentives are expended at the time of the 493 installation of the system, so they are typically not value-affecting after completion, whether 494 installed new or as part of an energy-efficiency upgrade. However, they may be relevant to 495 appraisers when estimating replacement cost new in the valuation process.

Tax benefits typically are outside the consideration of a typical market value appraisal as well, since they accrue to the property owner, not the real estate, and their value is dependent on the tax situation of the owner. However, for appraisers providing consulting services including feasibility analysis for renewable energy or payback/ROI analysis for upgrades and retrofits, tax benefits and rebates may be relevant depending on the particular assignment. Appraisers engaging in this area of work should seek the advice of outside professionals when needed, particularly with respect to tax implications that might be outside the appraiser's expertise.

# 503 Current USPAP Rules and Standards

- All sections of the Uniform Standards of Professional Appraisal Practice (USPAP) that are relevant to the valuation of green and/or energy-efficient buildings should be considered.
- 506 The relevance of the concepts emphasized in the COMPETENCY RULE is looked at in the 507 context of the appraisal of green building in the following bullet points:
- Properly identify the problem to be addressed: Appraisers should be able to recognize green buildings and green features in brown buildings in order to determine and perform the appropriate scope of work, conduct relevant market research, and use appropriate valuation methodologies. Green buildings and features are sometimes difficult to distinguish from conventional buildings. Appraisers must have enough basic competency to know whether or not the property being appraised requires specialized knowledge of green buildings.
- *Knowledge and experience to complete the assignment competently:* When appraising green
   buildings, appraisers must possess or take steps to gain the necessary knowledge and
   experience required to competently value green buildings and brown buildings with green
   and/or energy-efficient features.
- Competency may apply to factors such as...familiarity with a specific type of property or asset,...special laws and regulations or an analytical method: Like any other property type or property characteristic, competence mandates that the appraiser be adequately familiar with the asset type/features, as well as the appropriate and most widely-used valuation techniques for the particular property/features.
- 523 Potential scenarios where appraisers may encounter difficulty can be broken down into these 524 major categories:
- Insufficient knowledge and experience leading to value conclusions that is not credible.
   Influence of bias (green and brown), unintentional or otherwise, on the value conclusion.
- Having adequate knowledge and experience but not applying them correctly.

# 528 Insufficient knowledge and experience

- 529 USPAP addresses the development and communication of the appraisal; if the development 530 process is performed according to Standards, the results should be credible. The following are 531 examples of potential issues in the valuation of green buildings:
- Assigning value, or no value, to green components without market support.

Impacts on value must be market-supported. Appraisers unfamiliar with green building concepts, features and practices may incorrectly assume that value impacts will be obvious in the comparable data, when, in fact, most data service providers do not specifically cull out green features or labels. For example, most data service providers do not specifically identify green labels, or features, such as solar photovoltaic systems (solar PV), and if they do, it may not be reported consistently.

539 Value impacting green characteristics, including physical features, as well as less obvious 540 characteristics such as integrated design may also require different metrics of comparison, 541 such as HERS Index Rating for homes or ENERGY STAR score for commercial buildings. 542 or energy use intensity (EUI). Such metrics may not only be unfamiliar to most appraisers, 543 but may also require accessing alternate data sources like the EPA ENERGY STAR 544 database, or utilizing alternative analytical approaches. Single-family residential appraisers, 545 who normally do not use income-based valuation models such as a DCF in their regular 546 practice, may need to do so in order to competently value a solar PV installation.

- 547 Overlooking green features. Appraisers may fail to note green features in the appraisal • 548 because they either do not know how to address them, or simply fail to note their existence, 549 potentially resulting in an error of omission. Many green characteristics are virtually 550 invisible on a typical inspection, such as high-performance glazing, above-standard 551 insulation, energy efficient lighting, motion- and daylight-responsive lighting controls, or an 552 advanced building automation/management system (BAS/BMS). Competent appraisers can 553 be expected to know what to look for and what questions to ask to avoid missing relevant 554 features.
- If the market places a greater emphasis on green characteristics like energy efficiency, or 555 556 quality of the interior environment, the potential impact on the existing, non-green buildings 557 is obsolescence - the brown discount. Further, green features like solar PV, low-flow 558 fixtures, and energy efficient lighting are often incorporated, by choice or by code, into major 559 retrofit projects. Unless appraisers have a fundamental understanding of green building 560 concepts and practices, and study market behavior relating to these features, appraisers risk 561 missing or misapplying important adjustments to the comparables and the subject that may 562 result in potentially providing inaccurate, and/or misleading results.
- 563 Given the degree to which green building features and sustainable building practices have 564 been adopted by the building and design industry, and incorporated into building codes and 565 government policy, in some markets, some level of green building knowledge and facility 566 could be needed by real property appraisers, both commercial and residential, that appraise 567 green or brown buildings in their practice.
- 568 Unsupported or Inappropriate Adjustments. As with any other building feature, green 569 building features, labels, certifications require market support, which may be derived from 570 conventional paired-sales/rent analysis, or from other sources including market interviews 571 and/or applicable secondary data sources such as studies and third-party research. However, 572 appraisers applying an across-the-board adjustment to the comparable properties based on a 573 dollar amount not market-derived, or random/unsupported percentage adjustments for green 574 features and characteristics face the same competency risk as do appraisers who apply 575 unsupported or inappropriate adjustments for other, non-green features.

576 When considering adjustments to the comparables in the valuation process, appraisers must 577 subject green feature adjustments to the same rigor of analysis as any other adjustment. 578 Adjustments must remain consistent with appraisal theory, and must be supportable by 579 observations of market behavior including, but not limited to, sale and lease comparable data. 580 The following are examples of unsupported or inappropriate adjustments:

- 581 o Using a multiplier for energy efficiency savings without adequate market research and support;
- Applying a fixed percent premium for green certification, based solely on the industry reported cost premium over a code-built structure, without independently investigating if
   the cost premium is accurate and relevant to the specific market, and whether or not
   market participants are using this as a basis of comparison/adjustment;
- Assuming the market reaction, if any, to green or energy efficiency features is the same for different geographic areas (e.g., Northeast vs. West Coast, Central California vs. Coastal, urban versus suburban) or different market segments (e.g., commercial versus s90 residential, high-end residential versus entry level, Class A office vs. Class B office);
- 591 O Using methods and/or analytical approaches that are inconsistent with established appraisal theory and practice would raise competency concerns, just as they would if applied to non-green features; and
- Assuming that the market will react the same way it did the last time the appraiser
   worked in that market. Market reactions to green building can evolve more rapidly than
   appraisers may be accustomed to, and competent valuation requires the appraiser to stay
   informed and aware of all relevant market trends.

# 598 Influence of Bias

599 Good ethical business practice and an appraiser's professional reputation are centered on the 600 assumption of objectivity: i.e., that the appraiser will render an objective value opinion free of 601 bias. Further, performing an assignment with bias is a clear violation of the USPAP ETHICS 602 RULE,<sup>9</sup> which states, in part:

- 603 "An appraiser must not perform an assignment with bias." USPAP defines bias as: "a 604 preference or inclination that precludes an appraiser's impartiality, independence, or 605 objectivity in an assignment."<sup>10</sup>
- 606 "Green" bias is evident when an appraiser assumes green buildings or properties with green
  607 features are inherently worth more than non-green properties, without conducting adequate
  608 research to support that opinion.
- 609 "Brown" bias is evident where an appraiser dismisses any potential value impact of green 610 buildings or properties with green features without first conducting the necessary research to 611 support the contention that the market does not attribute value to those features.
- 612 Some level of skepticism and resistance to new concepts and market influences is normal and a 613 healthy part of the valuation process when dealing with new property types and market

 <sup>&</sup>lt;sup>9</sup> Uniform Standards of Professional Appraisal Practice (USPAP) – 2012-2013 edition, (Washington, D.C.: The Appraisal Foundation, 2012), U-7.
 <sup>10</sup> Ibid, U-2.

First Exposure Draft - Valuation of Green Buildings: Background and Core Competency22

614 influences. However, when resistance to new ideas or approaches persists, the appraiser's 615 objectivity may become compromised, resulting in an unacceptable bias. Examples of bias 616 include:

- 617 Assuming the market doesn't care, so why should the appraiser (brown bias)? Appraisers • 618 may misjudge, intentionally, or because they have not conducted necessary market research 619 to render an appropriate judgment, the degree to which the market has incorporated 620 sustainability into its market value decision matrix, and therefore, miss the value the market 621 may assign to green labels, energy-efficiency ratings, green features and sustainable building 622 practices. Ignoring the green certification because the appraiser was "waiting for the green 623 sales job" from the borrower is a clear example of not completing adequate due diligence that 624 is expected of a competent appraiser.
- 625 Assuming that all green building benefits accrue to the public or environment, and therefore, • 626 the only potential impact to the subject property's market value is an economic cost (brown 627 bias). Green buildings and green features often have positive non-economic impacts, but 628 they also often have positive economic impacts as well. Energy savings, water savings, and 629 the potential for higher rents are examples of direct impacts that may positively impact the 630 economic bottom line. Indirect impacts on the property might include improvement to the 631 quality of the interior environment (air quality, daylight) that can improve productivity and 632 tenant satisfaction, which can lead to improved tenant retention and therefore, lower turnover 633 costs. Green-certified houses are often subjected to added inspections and performance 634 testing, with greater attention to durability and resistance to pests and decay.
- Assuming green characteristics and/or certifications always add value (green bias).
   Appraisers may alternately adopt a bias, unintentional or otherwise, that all green buildings
   and green building features add value, without adequately analyzing the full spectrum of
   value impacts or conducting adequate market research to support that contention.

# 639 *Expectations for appraisers/thresholds for competence*

640 This topic is of prime relevance to appraisers because subject-matter and geographic competency 641 are fundamental requirements of any appraisal assignment. Determining the minimum threshold 642 for core competency will depend to some degree on property type, geography, time, and the 643 intended use of the appraisal opinions and conclusions.

- However, while the level of rigor expected of an appraiser may vary, the basic criteria to judge
  competency for a green property follow the same steps that apply to any appraisal assignment:
  problem definition and identification, research and analysis, and development and reporting of
  the value.
- For example, in an assignment to appraise a residential or commercial green building, an energyefficient property or a brown property with green/energy-efficient features, the appraiser's competency for the particular assignment may be determined based on the appraiser's ability to accurately:
- 652 identify the subject property's characteristics that would cause it to be classified as green or
   653 energy-efficient (applies to both green buildings and brown buildings with green features);
- verify these characteristics through documentation and information available for the type of characteristic with an emphasis on third-party verification;
- analyze the market to determine if these characteristics contribute to market value; and

First Exposure Draft - Valuation of Green Buildings: Background and Core Competency23

• develop and report an opinion of market value of the subject property.

The following section provides specific examples of suggested minimum thresholds of competence for both residential and commercial appraisers performing assignments that include valuing green buildings, energy-efficient buildings, brown buildings with green or energyefficient features and brown buildings in predominantly green markets. This list is not meant to be exhaustive but rather illustrative of the specific types of knowledge and skills required of today's appraiser.

- Recognize, capture, and analyze relevant green and energy-efficient characteristics from data services (such as MLS, CoStar, Loopnet) related to the subject property and comparable sales while recognizing that such data services may not specifically note green features, certifications, labels, and energy scores. Appraisers will likely be required to move beyond traditional data sources like MLS for information on certifications, labels, third-party verifications, and specific green/energy efficient features.
- Understand the difference between an energy-efficiency score (ENERGY STAR for commercial buildings or HERS for homes) and a sustainability-based green building certification/label (such as LEED, NAHB (National Association of Home Builders) National Green Building Standard), and the implications for valuation.
- Understand the dominant green building rating system for the market and property type being appraised. Be aware of the differences between the various green building rating systems in terms of metrics (what it measures), rigor (how it measures), whether it is self- or third-party certified, and whether it is performance/operations-based (such as LEED Existing Buildings Operations and Maintenance, or EBOM) or design/asset based (LEED Core & Shell, LEED 679 New Construction, etc.).
- Recognize that green building certifications and energy scores are time sensitive, and the relevance/reliability of a rating or certification may diminish as time passes. Properties may need to be re-certified or re-rated due to changes in: 1) the rating system, 2) the structure, and/or 3) the occupancy or manner in which it is used or operated.
- Explain, describe and cite the relevance, if any, to market value of any green
   labels/certifications and/or energy efficiency score/labels as well as energy-efficient or green
   building features in the appraisal report.
- Appropriately analyze, discuss and report the degree of value impact, if any, of the label,
   certification or green and energy-efficient characteristics of the property (includes green or
   energy-efficient features in brown buildings).
- Read, analyze and appropriately consider in the valuation the impact, if any, of any building performance assessments, audits, or energy-efficiency reports available for the property.
- Have access to and appropriately employ the "green section" of popular building costs estimator services. Understand that in areas with green building codes, the marginal cost of green and energy-efficient buildings should already be embedded in the manuals' standard cost estimates for new construction, but may not be included for component costs.
- Be aware of the cost/value implications of integrated design and integrated systems.
   Integrated design and systems integration (synergies) can result in cost savings that may
   offset added costs of green features. These cost interactions are typically not embedded in
   the published cost manuals.

- Possess baseline knowledge of energy efficiency, green building and sustainability concepts,
   technologies, and building features sufficient to differentiate between properties that are
   considered green, and/or energy efficient and those that are not.
- Be aware of, and monitor, market behaviors and attitudes relating to sustainability, green
   building and energy efficiency, which may include primary research (observation,
   interviews, surveys) as well as secondary research (publications, studies, published research).
- Conduct an appropriate level of market research and analysis to support the market's willingness to pay for energy efficiency and other green building features.
- Develop an appropriate scope of work to address the green, energy efficient, or sustainable features in the subject property, in the context of the market attitudes, client requirements, and intended use/user of the report.
- In addition, residential appraisers would also be expected to:
- O Understand the HERS Index Rating or similar energy efficiency scoring metric that is
   dominant in the market and know where to obtain this data for the subject and
   comparable properties.
- Report any energy efficient or green features and the methods used to analyze value in that particular market, within the appraisal report.
- Appropriately consider energy savings from energy-efficiency upgrades in the valuation
   process. Conduct adequate market research to support the use of gross rent multiplier
   (GRM), discounted cash flow (DCF) or similar income-based valuation techniques.

In order to meet the above criteria, appraisers who accept these types of assignments may need to 720 721 more fully understand the meaning and implications of selected key terms and concepts, outlined 722 in the following section, "Key Terms and Concepts." Where there are differences between 723 residential and commercial appraisers, those distinctions are noted within the specific topic. In 724 addition to these terms and concepts, appraisers are expected to understand the meaning and 725 implications of green building terms and concepts used by the typical local market participant in 726 the decision-making process. For example, if an appraiser is working in an area where solar 727 panel installations are not uncommon, it is incumbent upon the appraiser to have a firm 728 understanding of the various types of solar panel systems (such as solar PV vs. solar thermal) 729 and how to determine the value impact of a solar array. Likewise, a commercial appraiser 730 appraising commercial office buildings may be required to understand and value additional new 731 building technologies such as building automation/management systems (BAS/BMS), among 732 others.

# **Addendum: Selected Resources**

# 733 Internet Resources

- 734 Energy Efficiency Scores, Ratings Labels & Tools
- EPA Energy Star (Energy Star for Homes and EPA Portfolio Manager for Commercial): http://www.energystar.gov/
- Energy Information Administration (EIA): <u>http://www.eia.gov/consumption/commercial/</u>
- Office of Energy Efficiency and Renewable Energy (DOE): <u>http://www.eere.energy.gov/</u>

# 739 Residential Green Ratings, Labels and Tools

- Appraisal Institute Residential Green and Energy Efficient tax credit (Form 820.03):
   <u>http://www.appraisalinstitute.org/education/downloads/ai\_82003\_reslgreenenergyeffaddendum.pdf</u>
- National Association of Homebuilders (NAHBGreen aka National Green Building Standard): http://www.nahbgreen.org/
- 744• RESNET/Home Energy Rating System (HERS):<a href="http://resnet.us/">http://resnet.us/</a> and745<a href="http://www.energy.ca.gov/HERS/">http://resnet.us/</a> and
- Home Energy Score (HES): <u>http://www1.eere.energy.gov/buildings/residential/hes\_index.html</u>
- Build it Green (GreenPoint Rated): <u>http://www.builditgreen.org/greenpoint-rated/</u> Fannie Mae Green
   Initiative (especially Green Initiatives Resources): <u>https://www.fanniemae.com/multifamily/green-initiative</u>
- 750 Commercial Green Ratings, Labels & Tools
- U.S. Green Building Council(LEED): <u>http://usgbc.org</u> (especially Resources), also <u>http://gbig.org</u>
- Green Building Institute (Green Globes): <u>http://www.greenbuildinginstitute.org/</u>
- New Buildings Institute: <u>http://newbuildings.org/</u>

#### 754 **Building Codes**

- International Green Construction Code(IgCC): <u>http://www.iccsafe.org/cs/igcc/pages/default.aspx</u>
- ASHRAE Green Standard 189.1 (Standard for the Design of High-Performance, Green Buildings): https://www.ashrae.org/resources--publications/bookstore/standard-189-1

# 758 **Publications**

- Journal of Sustainable Real Estate (JOSRE)<u>www.costar.com/josre/</u>
- Journal of Green Building <u>http://www.collegepublishing.us/journal.htm</u>
- Green Builder magazine (residential) <u>http://www.greenbuildermag.com/</u>
- Hoen, B., R. Wiser, P. Cappers and Mark Thayer, An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California, Lawrence Berkeley National Laboratory Environmental Energy Technologies Division, April 2011 <u>http://eetd.lbl.gov/ea/emp/reports/lbnl-4476e.pdf</u>
- Muldaven, Scott, Value Beyond Cost Savings, Green Building Finance Consortium: http://www.greenbuildingfc.com/

First Exposure Draft - Valuation of Green Buildings: Background and Core Competency26

- Pivo, G. and J. Fisher. Investment Returns form Responsible Property Investments: Energy Efficient, Transit-oriented and Urban Regeneration Office Properties in the U.S. from 1998–2008. Working Paper, Responsible Property Investing Center, Boston College, University of Arizona Benecki Center for Real Estate Studies, Indiana University, October 11, 2008, revised March 3, 2009
   www.uic.edu/cba/mare/CureEvents/InvestmentReturns.pdf
- Runde, Timothy and Thoyre, Stacey, Integrating Sustainability and Green Building into the Appraisal Process, Journal of Sustainable Real Estate (JOSRE) Vol 2, No. 1, 2010.
   http://www.costar.com/uploadedFiles/JOSRE/JournalPdfs/11.221\_248.pdf
- Wright-Chappell, T. and B. Smith. High Performance Green Building: What's it Worth? Cascadia Region Green Building Council, May 2009. <u>http://living-future.org/sites/default/files/HighPerfGB\_ValuationStudy.pdf</u>

# 779 *Educational Resources*

- Appraisal Institute Courses: <u>http://www.appraisalinstitute.org/education/green/</u>
- 781 o Introduction to Green Buildings: Principles & Concepts
- 782 Case Studies in Appraising Green Residential Buildings
- 783 Case Studies in Appraising Green Commercial Buildings
- 784 o Residential and Commercial Valuation of Solar
- Appraisal Institute's *Valuation of Sustainable Buildings* Professional Development Program: http://www.appraisalinstitute.org/education/green/downloads/green-faqs.pdf
- Webinar: Is Green the New Brown for Appraisers? 5 Lessons from the Field. Appraisal Institute
   Northern California Chapter, December 2010: https://dl.dropbox.com/u/14128443/Webinar.wmv